Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.

Identifieur interne : 000280 ( Main/Exploration ); précédent : 000279; suivant : 000281

Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.

Auteurs : Xiao-Yu Zhang [République populaire de Chine] ; Ziyuan Huang [États-Unis] ; Xuehui Su [République populaire de Chine] ; Andrew Siu [États-Unis] ; Yuepeng Song [République populaire de Chine] ; Deqiang Zhang [République populaire de Chine] ; Qing Fang [Japon]

Source :

RBID : pubmed:32045452

Descripteurs français

English descriptors

Abstract

BACKGROUND

As an essential component in reducing anthropogenic CO2 emissions to the atmosphere, tree planting is the key to keeping carbon dioxide emissions under control. In 1992, the United Nations agreed to take action at the Earth Summit to stabilize and reduce net zero global anthropogenic CO2 emissions. Tree planting was identified as an effective method to offset CO2 emissions. A high net photosynthetic rate (Pn) with fast-growing trees could efficiently fulfill the goal of CO2 emission reduction. Net photosynthetic rate model can provide refernece for plant's stability of photosynthesis productivity.

METHODS AND RESULTS

Using leaf phenotype data to predict the Pn can help effectively guide tree planting policies to offset CO2 release into the atmosphere. Tree planting has been proposed as one climate change solution. One of the most popular trees to plant are poplars. This study used a Populus simonii (P. simonii) dataset collected from 23 artificial forests in northern China. The samples represent almost the entire geographic distribution of P. simonii. The geographic locations of these P. simonii trees cover most of the major provinces of northern China. The northwestern point reaches (36°30'N, 98°09'E). The northeastern point reaches (40°91'N, 115°83'E). The southwestern point reaches (32°31'N, 108°90'E). The southeastern point reaches (34°39'N, 113°74'E). The collected data on leaf phenotypic traits are sparse, noisy, and highly correlated. The photosynthetic rate data are nonnormal and skewed. Many machine learning algorithms can produce reasonably accurate predictions despite these data issues. Influential outliers are removed to allow an accurate and precise prediction, and cluster analysis is implemented as part of a data exploratory analysis to investigate further details in the dataset. We select four regression methods, extreme gradient boosting (XGBoost), support vector machine (SVM), random forest (RF) and generalized additive model (GAM), which are suitable to use on the dataset given in this study. Cross-validation and regularization mechanisms are implemented in the XGBoost, SVM, RF, and GAM algorithms to ensure the validity of the outputs.

CONCLUSIONS

The best-performing approach is XGBoost, which generates a net photosynthetic rate prediction that has a 0.77 correlation with the actual rates. Moreover, the root mean square error (RMSE) is 2.57, which is approximately 35 percent smaller than the standard deviation of 3.97. The other metrics, i.e., the MAE, R2, and the min-max accuracy are 1.12, 0.60, and 0.93, respectively. This study demonstrates the ability of machine learning models to use noisy leaf phenotype data to predict the net photosynthetic rate with significant accuracy. Most net photosynthetic rate prediction studies are conducted on herbaceous plants. The net photosynthetic rate prediction of P. simonii, a kind of woody plant, illustrates significant guidance for plant science or environmental science regarding the predictive relationship between leaf phenotypic characteristics and the Pn for woody plants in northern China.


DOI: 10.1371/journal.pone.0228645
PubMed: 32045452
PubMed Central: PMC7012418


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.</title>
<author>
<name sortKey="Zhang, Xiao Yu" sort="Zhang, Xiao Yu" uniqKey="Zhang X" first="Xiao-Yu" last="Zhang">Xiao-Yu Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Science, Beijing Forestry University, Beijing, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Science, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ziyuan" sort="Huang, Ziyuan" uniqKey="Huang Z" first="Ziyuan" last="Huang">Ziyuan Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Data Science, Harrisburg University of Science and Technology, Harrisburg, PA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Data Science, Harrisburg University of Science and Technology, Harrisburg, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Su, Xuehui" sort="Su, Xuehui" uniqKey="Su X" first="Xuehui" last="Su">Xuehui Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo</wicri:regionArea>
<wicri:noRegion>Jiaozuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siu, Andrew" sort="Siu, Andrew" uniqKey="Siu A" first="Andrew" last="Siu">Andrew Siu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Amgen Inc., Thousand Oaks, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Amgen Inc., Thousand Oaks, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fang, Qing" sort="Fang, Qing" uniqKey="Fang Q" first="Qing" last="Fang">Qing Fang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32045452</idno>
<idno type="pmid">32045452</idno>
<idno type="doi">10.1371/journal.pone.0228645</idno>
<idno type="pmc">PMC7012418</idno>
<idno type="wicri:Area/Main/Corpus">000470</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000470</idno>
<idno type="wicri:Area/Main/Curation">000470</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000470</idno>
<idno type="wicri:Area/Main/Exploration">000470</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.</title>
<author>
<name sortKey="Zhang, Xiao Yu" sort="Zhang, Xiao Yu" uniqKey="Zhang X" first="Xiao-Yu" last="Zhang">Xiao-Yu Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Science, Beijing Forestry University, Beijing, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Science, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ziyuan" sort="Huang, Ziyuan" uniqKey="Huang Z" first="Ziyuan" last="Huang">Ziyuan Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Data Science, Harrisburg University of Science and Technology, Harrisburg, PA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Data Science, Harrisburg University of Science and Technology, Harrisburg, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Su, Xuehui" sort="Su, Xuehui" uniqKey="Su X" first="Xuehui" last="Su">Xuehui Su</name>
<affiliation wicri:level="1">
<nlm:affiliation>Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo</wicri:regionArea>
<wicri:noRegion>Jiaozuo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siu, Andrew" sort="Siu, Andrew" uniqKey="Siu A" first="Andrew" last="Siu">Andrew Siu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Amgen Inc., Thousand Oaks, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Amgen Inc., Thousand Oaks, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Technology, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fang, Qing" sort="Fang, Qing" uniqKey="Fang Q" first="Qing" last="Fang">Qing Fang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Machine Learning (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apprentissage machine (MeSH)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Machine Learning</term>
<term>Models, Theoretical</term>
<term>Phenotype</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apprentissage machine</term>
<term>Modèles théoriques</term>
<term>Photosynthèse</term>
<term>Phénotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>As an essential component in reducing anthropogenic CO2 emissions to the atmosphere, tree planting is the key to keeping carbon dioxide emissions under control. In 1992, the United Nations agreed to take action at the Earth Summit to stabilize and reduce net zero global anthropogenic CO2 emissions. Tree planting was identified as an effective method to offset CO2 emissions. A high net photosynthetic rate (Pn) with fast-growing trees could efficiently fulfill the goal of CO2 emission reduction. Net photosynthetic rate model can provide refernece for plant's stability of photosynthesis productivity.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS AND RESULTS</b>
</p>
<p>Using leaf phenotype data to predict the Pn can help effectively guide tree planting policies to offset CO2 release into the atmosphere. Tree planting has been proposed as one climate change solution. One of the most popular trees to plant are poplars. This study used a Populus simonii (P. simonii) dataset collected from 23 artificial forests in northern China. The samples represent almost the entire geographic distribution of P. simonii. The geographic locations of these P. simonii trees cover most of the major provinces of northern China. The northwestern point reaches (36°30'N, 98°09'E). The northeastern point reaches (40°91'N, 115°83'E). The southwestern point reaches (32°31'N, 108°90'E). The southeastern point reaches (34°39'N, 113°74'E). The collected data on leaf phenotypic traits are sparse, noisy, and highly correlated. The photosynthetic rate data are nonnormal and skewed. Many machine learning algorithms can produce reasonably accurate predictions despite these data issues. Influential outliers are removed to allow an accurate and precise prediction, and cluster analysis is implemented as part of a data exploratory analysis to investigate further details in the dataset. We select four regression methods, extreme gradient boosting (XGBoost), support vector machine (SVM), random forest (RF) and generalized additive model (GAM), which are suitable to use on the dataset given in this study. Cross-validation and regularization mechanisms are implemented in the XGBoost, SVM, RF, and GAM algorithms to ensure the validity of the outputs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The best-performing approach is XGBoost, which generates a net photosynthetic rate prediction that has a 0.77 correlation with the actual rates. Moreover, the root mean square error (RMSE) is 2.57, which is approximately 35 percent smaller than the standard deviation of 3.97. The other metrics, i.e., the MAE, R2, and the min-max accuracy are 1.12, 0.60, and 0.93, respectively. This study demonstrates the ability of machine learning models to use noisy leaf phenotype data to predict the net photosynthetic rate with significant accuracy. Most net photosynthetic rate prediction studies are conducted on herbaceous plants. The net photosynthetic rate prediction of P. simonii, a kind of woody plant, illustrates significant guidance for plant science or environmental science regarding the predictive relationship between leaf phenotypic characteristics and the Pn for woody plants in northern China.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32045452</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.</ArticleTitle>
<Pagination>
<MedlinePgn>e0228645</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0228645</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">As an essential component in reducing anthropogenic CO2 emissions to the atmosphere, tree planting is the key to keeping carbon dioxide emissions under control. In 1992, the United Nations agreed to take action at the Earth Summit to stabilize and reduce net zero global anthropogenic CO2 emissions. Tree planting was identified as an effective method to offset CO2 emissions. A high net photosynthetic rate (Pn) with fast-growing trees could efficiently fulfill the goal of CO2 emission reduction. Net photosynthetic rate model can provide refernece for plant's stability of photosynthesis productivity.</AbstractText>
<AbstractText Label="METHODS AND RESULTS">Using leaf phenotype data to predict the Pn can help effectively guide tree planting policies to offset CO2 release into the atmosphere. Tree planting has been proposed as one climate change solution. One of the most popular trees to plant are poplars. This study used a Populus simonii (P. simonii) dataset collected from 23 artificial forests in northern China. The samples represent almost the entire geographic distribution of P. simonii. The geographic locations of these P. simonii trees cover most of the major provinces of northern China. The northwestern point reaches (36°30'N, 98°09'E). The northeastern point reaches (40°91'N, 115°83'E). The southwestern point reaches (32°31'N, 108°90'E). The southeastern point reaches (34°39'N, 113°74'E). The collected data on leaf phenotypic traits are sparse, noisy, and highly correlated. The photosynthetic rate data are nonnormal and skewed. Many machine learning algorithms can produce reasonably accurate predictions despite these data issues. Influential outliers are removed to allow an accurate and precise prediction, and cluster analysis is implemented as part of a data exploratory analysis to investigate further details in the dataset. We select four regression methods, extreme gradient boosting (XGBoost), support vector machine (SVM), random forest (RF) and generalized additive model (GAM), which are suitable to use on the dataset given in this study. Cross-validation and regularization mechanisms are implemented in the XGBoost, SVM, RF, and GAM algorithms to ensure the validity of the outputs.</AbstractText>
<AbstractText Label="CONCLUSIONS">The best-performing approach is XGBoost, which generates a net photosynthetic rate prediction that has a 0.77 correlation with the actual rates. Moreover, the root mean square error (RMSE) is 2.57, which is approximately 35 percent smaller than the standard deviation of 3.97. The other metrics, i.e., the MAE, R2, and the min-max accuracy are 1.12, 0.60, and 0.93, respectively. This study demonstrates the ability of machine learning models to use noisy leaf phenotype data to predict the net photosynthetic rate with significant accuracy. Most net photosynthetic rate prediction studies are conducted on herbaceous plants. The net photosynthetic rate prediction of P. simonii, a kind of woody plant, illustrates significant guidance for plant science or environmental science regarding the predictive relationship between leaf phenotypic characteristics and the Pn for woody plants in northern China.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiao-Yu</ForeName>
<Initials>XY</Initials>
<Identifier Source="ORCID">0000-0002-2794-3848</Identifier>
<AffiliationInfo>
<Affiliation>College of Science, Beijing Forestry University, Beijing, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Ziyuan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Data Science, Harrisburg University of Science and Technology, Harrisburg, PA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xuehui</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Siu</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Amgen Inc., Thousand Oaks, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000069550" MajorTopicYN="Y">Machine Learning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>Author Andrew Siu was employed by Amgen. This disclosure does not alter our adherence to the PLOS ONE polices on sharing data and materials. All authors declare no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32045452</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0228645</ArticleId>
<ArticleId IdType="pii">PONE-D-19-27819</ArticleId>
<ArticleId IdType="pmc">PMC7012418</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 1991 Jul;184(4):538-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Feb;67(3):723-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552881</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Xiao Yu" sort="Zhang, Xiao Yu" uniqKey="Zhang X" first="Xiao-Yu" last="Zhang">Xiao-Yu Zhang</name>
</noRegion>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<name sortKey="Su, Xuehui" sort="Su, Xuehui" uniqKey="Su X" first="Xuehui" last="Su">Xuehui Su</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</country>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Huang, Ziyuan" sort="Huang, Ziyuan" uniqKey="Huang Z" first="Ziyuan" last="Huang">Ziyuan Huang</name>
</region>
<name sortKey="Siu, Andrew" sort="Siu, Andrew" uniqKey="Siu A" first="Andrew" last="Siu">Andrew Siu</name>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Fang, Qing" sort="Fang, Qing" uniqKey="Fang Q" first="Qing" last="Fang">Qing Fang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32045452
   |texte=   Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32045452" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020